CHEMISTRY OF A MOLYBDENUM-PERSULFIDE COMPLEX: ALKYLATION AND OXIDATIVE COUPLING¹

David N. Harpp^{*} and J. Gavin MacDonald Department of Chemistry, McGill University Montreal, Quebec, Canada H3A 2K6

<u>ABSTRACT</u>: The reaction of alkyl halides, sulfinyl and sulfonyl chlorides with $(NH_4)_2[(S_2)_2Mo(S_2)_2Mo(S_2)_2]$ has been found to afford sulfides and disulfides in good-excellent isolated yield. The effect of solvent polarity and reaction time is discussed.

There is much current interest in the study of complexes containing molybdenum and sulfur², not least because of the coordination of molybdenum by a group of sulfur atoms in each of the molybdenum-containing enzymes such as nitrogenase, sulfite oxidase and xanthine oxidase³. Recent developments in molybdenum-sulfur chemistry serve to demonstrate the structural diversity possible for combination of these elements. Although these thioanions⁴, organic-ligand complexes⁵ and polymetallic heteronuclear clusters⁶ continue to stimulate the interest of both theoretical and synthetic chemists, very few studies have been conducted to investigate the reactivity of these complexes with organic reagents⁷. We wish to report our initial findings on the chemistry of 1.

Reaction of $(NH_4)_2[Mo_2S_{12}]$ (1)⁸ with benzyl bromide (2, R = PhCH₂-) in benzene in a sealed tube at 90°C gave after work-up, a 8:1 mixture of dibenzylsulfide (3a) to dibenzyldisulfide (3b) in 94% isolated yield⁹. Repeating the reaction with acetonitrile as solvent gave a 1:1 mixture of 3a to 3b in 95% overall yield. A series of alkyl bromides on treatment with reagent 1 with acetonitrile or benzene as solvent also gave a mixture of sulfides and disulfides (Table 1). It is of note that in benzene the more reactive benzyl bromide gave mainly sulfide whereas pentyl bromide gave mainly disulfide.

Product	R	RSR:RSSR	IsolatedYield (%)
		C6H6 CH3CN	C6H6 CH3CN
<u>3a</u>	с _{6н5Сн2} -	8:1 1:1	94 95
<u>3b</u>	CH3 (CH2) 4-	1:5 1:10	52 83
<u>3c</u>	cyclohexyl-	1:2 1:1	60 84

TABLE 1

Interestingly, reaction of <u>1</u> with \ll, \ll' -dibromo-<u>o</u>-xylene (<u>4</u>) under similar conditions gave 1,3dihydroisothianaphthene (<u>5</u>) as the sole product in good yield (67% in benzene and 70% in acetonitrile)¹⁰. Treatment of 2-bromo-2-methyl propane (<u>6</u>), 2,6-dibromocyclohexanone (<u>7</u>), or 1,3-dibromopropane (<u>8</u>) with sulfide reagent <u>1</u> in benzene or acetonitrile gave only starting materials even after prolonged heating.

In order to help elucidate the mechanism of the alkylation reaction, a solvent/time study was undertaken using benzyl bromide. It can be seen from Table 2 that in a non-polar solvent, the longer the reaction time, the greater the ratio of sulfide to disulfide. This trend is not observed in the more polar solvent (acetonitrile) where a l:l ratio of sulfide and disulfide is formed¹¹.

TABLE 2

Solvent	Time(h)	Ratio (RSR:RSSR)	Yield (%)
с _{6Н6}	20	3:1	90
с ₆ н _б	34	5:1	95
с _{6Н6}	48	8:1	94
с ₆ н _б	96	10:1	98
CH ₃ CN	20	1:1	85
CH3CN	34	1:1	95
CH ₃ CN	96	1:1	90
CH3CN	116	1:1	87

As a working hypothesis, we propose that the alkylation reaction involves the addition of the alkyl bromide across both the Mo-S and S-S bonds to afford the molybdenum alkyl disulfide <u>9</u> and sulfide <u>10</u>. These in turn would react with another molecule of alkyl bromide. Intermediates of type <u>10</u> are known and have been shown to react with alkyl halides to yield the sulfide¹².

The solvent/reaction time study (Table 2) suggests a competition between the two pathways.

We also examined the reaction of the persulfide complex <u>1</u> with sulfinyl and sulfonyl chlorides. treatment of <u>1</u> with either benzenesulfinyl chloride (<u>11</u>) or benzene sulfonyl chloride (<u>12</u>), in refluxing acetonitrile under a nitrogen atmosphere for 8h gave a 68% and 90% yield, respectively, of diphenyl disulfide (<u>13</u>)⁹.

In similar fashion, reaction of toluenesulfonyl chloride with <u>1</u> gave a 67% yield of ditolyl disulfide. However, toluenesulfonic acid did not react and only starting material was recovered even after prolonged reflux (20h). Examples of this type of oxidative coupling are rare¹³. Although no intermediates have been isolated to date, it seems probable that the reaction pathway involves the formation of, in the sulfinyl case, an α -disulfoxide (which would be expected to rearrange to the thiosulfonate¹⁴) or, in the sulfonyl chloride system, the α -disulfone. These intermediates would then be reduced to the disulfide. Support for this pathway was obtained when a sample of benzenethiosulfonate (<u>14</u>) was refluxed in acetonitrile with 1 for 4h under a nitrogen atmosphere to yield 81% of diphenyl disulfide (<u>13</u>)¹⁵.

Further synthetic and mechanistic studies involving the use of molybdenum persulfide complexes are currently under investigation.

Acknowledgement: We gratefully acknowledge the Natural Sciences and Engineering Council of Canada for financial support of this work.

REFERENCES

- Organic Sulfur Chemistry. Part 46. For part 45 see D. N. Harpp, T. Aida and T.H. Chan, <u>Tetrahedron Lett.</u>, 5173 (1983).
- W. Clegg, G. Christou, C.D. Gardiner and G.M. Sheldrick, <u>Inorg.Chem.</u>, <u>20</u>, 1562 (1981); "Molybdenum and Molybdenum Containing Enzymes", M. Coughlin, Ed., Pergamon Press: New York, 1980; A. Müller, and W. Jaegermann, <u>Inorg. Chem.</u>, <u>18</u>, 2631 (1979).

- J. Bordas, R. C. Bray, C.D. Garner, S. Gutteridge and S. S. Hasnain, J. <u>Biochem.</u>, <u>191</u>, 499 (1980); S.P. Cramer, H.B. Gray and K. V. Rajagopalan, <u>J. Am. Chem. Soc.</u>, <u>101</u>, 2772 (1979); S. P. Cramer, K. O. Hodgson, L.E. Mortenson, E.I. Stiefel, J.R. Chrisnell, W.J. Brill and V.K. Shah, <u>J. Am. Chem. Soc.</u>, 100, 3814 (1978).
- W. H. Pan, M. E. Leonowicz and E. I. Stiefel, <u>Inorg.Chem.</u>, <u>22</u>, 672 (1983); A. Mulle:,
 W. O. Nolte and B. Krebs, Inorg. Chem., 19, 2835 (1980).
- 5. K. F. Miller, A. E. Bruce, J. L. Corbin, S. Wherland and E. I. Steifel, <u>J. Am. Chem.</u> Soc., <u>102</u>, 5104 (1980) and references cited therin.
- 6. D. Coucouvanis, Accts. Chem. Res., 14, 201 (1981).
- 7. T. R. Halbet, W. H. Pan and E. I. Steifel, J. Am. Chem. Soc., 105, 5476 (1983).
- 8. A. Muller, W. O. Nolte and B. Krebs, Ang. Chem. Int. Ed. Eng., 17, 279 (1978).
- 9. The structures of the products were assigned on the basis of glc analysis and by comparison of their spectral and physical data with authentic samples. Glc analyses were conducted on a Varian Gas Chromatograph Model 3700 with Varian 4270 Integrator using a capillary column with appropriate standards.
- 10. PMR (60MHz, CDCl₃) 7.14 (s, 4H) and 4.20 (s, 4H); MS, m/e 136 (M⁺); Anal. Calc'd for C₈H₈S: C, 70.54; H, 5.92; S, 23.54, Found: C, 70.44; H, 5.92; S, 23.64.
- 11. Authentic samples of dibenzyl disulfide and sulfide remained unchanged when heated in acetonitrile or benzene with 1 under "reaction" conditions for 50h.
- 12. Private communication: A. G. Shaver and G. Marmolejo, McGill University.
- P. Kielbasinski, J. Drabowicz and M. Mikolajczyk, <u>J. Org. Chem.</u>, <u>47</u>, 4808 (1982); G. A. Olah, S. C. Narang, L. D. Field and G. F.Salem, <u>J. Org. Chem.</u>, <u>45</u>, 4792 (1980); T.H. Chan, J.P. Montillier, W.F. VanHorn and D. N. Harpp, <u>J. Am. Chem. Soc.</u>, <u>92</u>, 7224 (1970).
- 14. For example see: F. Freeman and C. N. Angeletakis, J. Am. Chem. Soc., 105, 4039 (1983).
- 15. The persulfide complex $\underline{1}$ does not appear to be a general reducing agent as treatment of $\underline{1}$ in acetonitrile with a variety of aralkyl and dialkyl sulfoxides and sulfones gave no trace of sulfide; starting materials were recovered even after prolonged reflux.

(Received in USA 9 November 1983)